

SAS 2024

CanSAS: data reduction

Dr Anna Sokolova

Bilby SANS (Andrew Whitten, Liliana de Campo)

Australian Centre for Neutron Scattering, ACNS ANSTO

anna.sokolova@ansto.gov.au

Science. Ingenuity. Sustainability.

ANSTO Lucas Heights Campus & OPAL Reactor

SANS at ACNS: Bilby & Quokka

Monochromatic vs polychromatic SANS

March – October 2024: Cold source replacement ~5% loss at short wavelength, ~5% gain at the long

ANSTO

Hydrogen issues: Incoherent / inelastic

Bilby: wavelength contamination is different for different detectors:

Effective wavelength recorded for **20Å** at L2 of: 2m: **19.97Å**; 5m: **17.4Å**; 10m: **15.5Å**; 18m: **13.15Å**

Effective wavelength recorded for **10Å** at L2 of: 2m: **9.5Å**; 5m: **8.88Å**; 10m: **8Å**; 18m: **7Å**.

Chopper – sample stage distance is ~30m

Hydrogen issues: Incoherent elastic / inelastic / multiple

"The study of biological structures by neutron scattering form bott ticn" B. Jacrot, Rep. Prog. Phys. (1976) 39, 911-953

"Can we justify conventional SANS data analysis?" Ghosh, R. E. & Rennie, A. K. (1990) Inst. Phys. Conf. Ser. 107, 233–244

"Assessment of detector calibration materials for SANS experiments" Pennie, A. F. & Heenan, R. K. , J. Appl. Cryst. (1999). 32, 1157-1163

Shibayama, M., Nagao, M., Okabe, S. & Karino, T. (2005). J. Thys. Soc. Jpn, 74, 2728–2736

"Improvement of data treatment in small-angle neutron scattering" A. Brulet, D. Lairez, A. Lapp and J.–P. Cotton, J. Appl. Cryst. (2007). 40, 165–177

"Evaluation of incoherent scattering intensity by transmission and sample thickness", M. Shibayama et al, J Appl Cryst (2009)

"Polarization analysis with 3He spin filters for separating coherent from incoherent scattering in soft matter studies", E. Babcock, Z. Salhia, M-S. Appavou, A. Feoktystov, V. Pipich, A.Fadulescu, V. Ossovyi, S. Staringer, A. Ioffe, Physics Procedia 42 (2013) 154 – 162

"Survey of background scattering from materials found in small-angle neutron scattering" Barker, J. G. & Mildner, D. F. R. (2015). J. Appl. Cryst. 48, 1055–1071

"Separation of the inelastic and elastic scattering in time-of-flight mode on the pinhole small-angle neutron scattering diffractometer KWS-2", L. Balacescu et al., J. Appl. Cryst. (2021). 54, 1217–1224

Important: backgrounds!! Even blocked beam – see empty beam scattering:

30min

Example: a lot of hydrogen in the solvent

Important: the fake peak on the red curve is NOT ending up published.

ToF issues: multiple scattering

Steel alloy: in the field, multiple scattering – sample is too thick

Bilby reduction: settings

ค.ศ.	• 6 • •					setting	gs_school - Excel										bilby 🖂 —	ЦΧ
File	Home Insert Page Lay	rout Formulas Data	Review View I	Help 🛛 🖓 Tell me w	rhat you want to do													A. Share
1 m	Cut	× 11 × A* * =	ab w	Inne Text	an and		Normal	ad	lood	Noutr	al	Calculation			- 🐟 🛱	∑ AutoS	um * A-	_
	Copy *			rrap text G	t at to 00	anditional Format ar	Normal B		1000	Neutr		Nete	•	10 cort	E Delete Format	😺 Fill -	Z T P	
i - 💉	Format Painter	· ⊞ • 🍄 • 🔺 =		lerge & Center 🔹 💲	\$ • % • 60 400 C	ormatting * Table *	Citatio Cali El	xpianatory	nput	Linked	Cell	Note	Ŧ	*		🦑 Clear	Filter * Select *	
Clipt	oard 🖓	Font Fa	Alignment	r _a	Number 5			Styles							Cells		Editing	^
B2	▼ : × √ fx	Name of the csv list of	of files to be reduced															~
A	В	с	D	E	F	G	н	1		J	к	L	M	1	N	0	р	
1 index	csv_file_name	ile_name reduced_files_folder binning_wavelength_binning_q binning_wavelength_t RadiusCut				WaveCut transmission_fit PolynomialOrder waveleng wav_delta						reduc	e_2[2D_number_da	taplot_2D	standard_mask		
F 7 7 7	Name of the csv list of files to be reduced	Path for a folder where reduced data will be stored	Wavelength boundaries for reduction: a comma separated list of first bin boundary, width, last bin boundary	Output Q- boundaries: a comma separated list of first bin boundary, width, last bin boundary	Wavelengths boundaries for transmission binning: a comma separated list of first bin boundary, width, last bin boundary	To increase resolution some wavelengths are excluded within this distance from the beam center (mm). Default value is "0"	To increase resolu by starting to rem some wavelength below thisfreshol (angstrom). Defau value is 0.	Function to to fit transmissio vition can be Line ove Log, s Polynomia d (first letter ilt shall be capital)	use ar, Used on Polynon function needed input pa anyway	ly for nial n, but as an arameter	If reduce data on wavelen gths' slices (case insensiti ve)	Wavelength interval for the slices (car be empty if not in use)	If red data i 2D mo (case insen ve)	uce (in l ode g siti l	Q-binning will be ignored; given Q-interva will be divided by number of points	1	Values can be 1 (the from input.csv is app or 4 (four quodrants the rear detector onl 6 (all six panels separately)	mask lied) on y) or
3	0 input_school2024.csv	data_school	2.0, -0.1, 20.0	0.001, -0.05, 2.0	2.0, -0.1, 20.0		0	0 Polynomia		3	TRUE		2 FAL	SE	10	0 FALSE		1
4																		
5	1 input school2024.csv	data conference	2.00.1. 20.0	0.001, -0.05, 2.0	2.00.1. 20.0		0	0 Polynomia	1	2	3 TRUE	1	7 FAL	SE	10	0 FALSE		1
7									7									
8																		
9																		
11																		
12																		100
13																		
14																		
16																		
17																		
18																		
19													-					
20																		
22					-											1		-
- 20 R	settings_school	۲							•									
Ready	2411																─ -	+ 100%

<u>Mantid Project – MantidProject landing page documentation</u>

https://github.com/hortica/Mantid_Bilby

ANSTO

Bilby reduction: list of files

ŀ	Home Insert Pa	ge Layout Formulas	Data Review Vi	ew Help 🛛 T	ell me what you want to do							2	
Хc	Cut Calibri	- 11 - A	• _A • ≡ ≡ ≫••	ab C [#] Wrap Text	General +	Norma	l Bad	Good	Neutral		∑ AutoSum →	AT P	
iste 💉 Format Painter 🛛 B I				🖽 Merge & Center	• \$ • % • \$ 00 ÷0	Conditional Format as Formatting * Table *	tion Check Ce	Explan	atory Input	Insert Delete Format	🔮 Clear *	Sort & Find & Filter * Select	
Clipbo	oard 🕞	Font	r _a Alig	nment	rs Number rs		Style	S .		Cells	Editi	ng	
	* : × ×	fx											
Δ	В	c	D	F	F	6	н	l i	I	K I	м	N	
dex	T_EmptyBeam	T_Sample	Sample	thickness mask	_transmission	mask	BlockedBeam	suffix	additional_description	T_BlockedI mask_transmiss	ion_StartTime	EndTime	
									-				
	0 BBY0073384	BBY0073383	BBY0073391	0.1 mask	_transmission_school	mask_scattering_school	BBY0073390	cubosomes					
	1 BBY0073384	BBY0073384	BBY0073392	0.1 mask	_transmission_school	mask_scattering_school	BBY0073390	empty_beam					
	2 BBY0073384	BBY0073385	BBY0073393	0.1 mask	_transmission_school	mask_scattering_school	BBY0073390	empty_cell					
	3 BBY0073604	BBY0073600	BBY0073602	0.1 mask	transmission school	mask scattering school	BBY0073390	H20					
	4 BBY0073604	BBY0073601	BBY0073603	0.1 mask	transmission_school	mask_scattering_school	BBY0073390	Cubosome					
	5 BBY0073604	BBY0073604	BBY0073605	0.1 mask	_transmission_school	mask_scattering_school	BBY0073390	Empty					
1	10 BBY0073608	BBY0073606	BBY0073610	0.1 mask	transmission school	mask scattering school	BBY0073609	H20					
1	11 BBY0073608	BBY0073607	BBY0073611	0.1 mask	transmission_school	mask_scattering_school	BBY0073609	Cubosome					
1	12 BBY0073608	BBY0073608	BBY0073612	0.1 mask	_transmission_school	mask_scattering_school	BBY0073609	Empty					
1	13 BBY0073615	BBY0073613	BBY0073617	0.1 mask	_transmission_school	mask_scattering_school	BBY0073616	H20					
1	14 BBY0073615	BBY0073614	BBY0073618	0.1 mask	_transmission_school	mask_scattering_school	BBY0073616	Cubosome					
1	15 BBY0073615	BBY0073615	BBY0073619	0.1 mask	_transmission_school	mask_scattering_school	BBY0073616	Empty					
0				.a				2					

<u>Mantid Project – MantidProject landing page documentation</u>

https://github.com/hortica/Mantid_Bilby

Uncorrected detectors shift: empty cell

Bilby: Liliana de Campo convinced me to try the reduction on unshifted detectors

Uncorrected & corrected detectors shift: cubosomes

Bilby: Liliana de Campo' sample

Here: importance of checking data on each quadrant – when averaged, all features gone (see next).

Mantid Project — MantidProject landing page documentation

https://github.com/hortica/Mantid_Bilby

Uncorrected & corrected detectors shift: cubosomes

Here: importance of checking data on each quadrant – when averaged, all features gone. Averaged data look nearly identical (speaking only low Q here).

Quality of the data

Bilby reduction: a lot of options – history can be recovered.

Strong scattering: forgiving for the shifts in detectors, unless looked at quadrants -> extra check for the anysometry!

Incoherent: a lot of extra peaks published – not real.

Users: Jupiter notebooks & the rest: how many things are going to be missed???

Current open questions:

- SAXS high Q background subtraction? Any more on SAXS?
- TOF SANS background subtraction issues from strongly hydrogenated samples (multiple, incoherent, inelastic scattering).
- Resolution for TOF SANS (WG already working on this) & SAXS?
- As mentioned for Bilby above: transparency of the code (more work for local contacts... but – peace of mind)
 - Autoscaling different configurations: background scaling, different resolution.
 - Various background subtraction can cause artificial feature to appear.
 - The wrong backgrounds / sensitivity was not applied (though sensitivity is not much of a drama for ToF).
- How can these be captured?
 - Publication guidelines? Like J. Trewhella (+ Hamburg group) for bioSANS/SAXS data?
 - Future: Pipelining and reduction on the fly (autoreduction)
 - BUT given above how to make sure it is done correctly for the current experiment? Is this an area where for AI/ML?
 - How do we maintain transparency on reduction in an age of automation? Do database repositories have a role here?
 - What about the growing push from publishers to publish the reduction and analysis.
 (Hard to publish intermediate results, not always available as outputs.)