Problems in analysis of timeresolved SAXS/WAXS data

Wim Bras
DUBBLE @ ESRF
Netherlands Organisation for Scientific Research (NWO)

The SRS in Daresbury (U.K.)

2 GeV machine

Think fondly about it as the older sister of Diamond

A rather weak machine.............

Nothing like the photon hammers we have nowadays........

8.2 , the 'weakest' of the bunch

3 SAXS stations

In order of appearance:
2.1, 8.2 and 16.1
(and much later 6.2)

It's present state

DUBBLE

But, it produced time-resolved SAXS/WAXS data even in single bunch mode

Good data.......

1-10 second time-resolution....... in single bunch
0.1-1 second in multibunch

And a lot of you guys in the audience have un-analysed still in your drawers....
(and this is true for any synchrotron and any beamline)

But I do agree with our opinionated porker

- But how do you (and me) get into such a mess?
- Are we just plain lazy?
- Did we go to Daresbury just for the good restaurant?
- Or do we lack the tools that we would like to have?

Smectic liquid crystals

- Candidates for fast switching LCD displays since only director movements required and no need of flipping of layers over 90°
- Reorientation mechanism under influence of changing fields not known
- Practical and theoretical interest

8CB model system

Crystal $-21.5^{\circ} \mathrm{C} \longrightarrow$ smectic $\mathrm{A}-33.5^{\circ} \mathrm{C} \longrightarrow$ \longrightarrow nematic $-40.5^{\circ} \mathrm{C} \longrightarrow$ isotropic

DUBBLE

smectic

Fourier transform of electron density

nematic

The experiment

Mechanically rotate the sample around the X-ray beam Watch it rotate back under the influence of the constant B-field

X-ray

Jump (70 msec)

mechanical

Under influence field (2 sec/frame)

B = 7 Tesla

Jump $45^{\circ} \mathrm{T}=30^{\circ} \mathrm{C}$
DUBBLE

Angular position as function of time

DUBBLE

This is fairly simple to do integrate over sectors fit peak plot as function of frame calculate angular velocity write paper

But.......

Jump (70 msec)

Rotate back
(2 sec/frame)

Jump $66.6^{\circ} \mathrm{T}=30^{\circ} \mathrm{C}$

DUBBLE

Intensity distribution $\mathrm{I}(\mathrm{q}=\mathrm{c}, \theta)$

Jump 90°

0°	90	180	270	360°

Well, Thierevgold indinotiompnodrmaypditestionut of the window !

Back to 90°

$$
\int_{0}^{360} I(q, \theta, t) d \theta
$$

No broadening \Rightarrow no nematic intermediate

What we want to do:

 and peak width of this stuff in time

And from this stuff

And further:

- Correlate the 100 intensity with the -100
- For each domain
- And correlate the domains with each other

And from the other experiments done in the same session.

In total > 200 experiments

I need an aspirine !

DUBBLE

Maybe we should start with

 something simplerThe 2002 SAS conference in Venice

Cordierite glass devitrivication

Cordierite
 Glass with very low expansion coefficient

$\mathrm{Mg}_{2} \mathrm{Al}_{4} \mathrm{Si}_{5} \mathrm{O}_{18}$ doped with
$0.34 \mathrm{~mol} \% \mathrm{Cr}_{2} \mathrm{O}_{3}$
(crystallization enhancer)

Experiment

temperature

Messy phase diagram

$1460^{\circ} \mathrm{C}$
 Mullite $3 \mathrm{Al}_{2} \mathrm{O}_{3} 2 \mathrm{SiO}_{2}$
 Protoenstatite MgOSiO_{2}
 Spinel $\mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$
 Forsterite $2 \mathrm{MgOSiO}_{2}$

W. Schreyer, J.F.Schairer J.Petrol., 2, 361,1961

Structure development

Data taken at 1 minute/frame

SAXS

DUBBLE

Form factor peaks (up to $5^{\text {th }}$ order)

The large number of form factor maxima indicate a very monodisperse sample

Relatively easy to analyse

- Find peak structure factor
- Find minima form factor
- Use these to calculate the particle size
- Fit formfactor function
- And repeat 250 times for one data set.....

And we have 40 data sets.....

WAXS data

Continuously changing background

The spinel peaks move right The stuffed quartz peaks move left

So:

- Changing background
- Moving peaks
- Varying intensity
- And off course a lot of sh*te of the detector which I will not show you since I, just like any other beamline guy, pretend that my detectors are perfect........

But:

- Some people call this data analysis
- I call it data reduction
- What about analysis software?

Let's take a look at the correlation function of this stuff

That's more like data analysis

(self) correlation function

$$
\gamma(r) \sim \rho(r) \rho\left(r-r^{\prime}\right)
$$

Development electron density profile

r

Growth and depletion zone

Nucleation and initial growth

Reduction depletion zone

But how was this done?

That's easy

You phone up Otto or Dmitri
Ask for a copy of their programs
Change your data format so that THEY like it
Plug in the curve
Analyse
Go for coffee break

You deserved that coffee break.............

The previous step took you about an hour.

Cheer up.............

Only 255 to go.....

Question:

Is there software that can do this reliably, i.e. no weird results that require extensive human intervention to get it right?

My answer to this is: NO

We can't even do that for a Guinier radius or Porod slope

So:

- I don't have the answer to how to solve our problems with time resolved data
- We don't get the full benefits out of our data
- We're robbing ourselves
- We keep moaning about better beamlines
- Better detectors
- What we really need is better software
- What we really need is a strong and focussed effort to achieve this.

And I've heard it all before

