Recent Developments in RheoSANS

Katie Weigandt (NIST)

June 7th 2017 canSAS Workshop

Acknowledgements

Steve Hudson (NIST) Javen Weston (NIST, Georgetown U) Daniel Seeman (NIST) Paul Salipante (NIST) Daniel Blair (Georgetown U)

Lionel Porcar (ILL) Joao Cabral (Imperial College London)

Matt Helgeson (UC Santa Barbara) Nino Ruocco (UC Santa Barbara) Patrick Corona (UC Santa Barbara)

Carlos Lopez-Barron (Exxon-Mobile) Jeff Richards (NIST)

Lynn Walker (Carnegie Mellon) Blake Bleier (Carnegie Mellon)

Funding: nSoft, NIST IMS

RheoSANS -- Introduction

Current Opinion in Colloid & Interface Science 17 (2012) 33-43

Flow-SANS and Rheo-SANS applied to soft matter

Aaron P.R. Eberle ^a, Lionel Porcar ^{b,*}

^a NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA ^b Large Scale Structure Group, Institut Laue Langevin, Grenoble, France

RheoSANS-Status quo

Measure Simultaneous Rheology, Structure and...

Dielectric RheoSANS: Motivation

Jeff Richards et al

Dielectric RheoSANS: Experiment

Richards J. J. et al, "Dielectric RheoSANS - Simultaneous Interrogation of Impedance, Rheology and Small Angle Neutron Scattering of Complex Fluids" 2017 JoVE in press.

Other Rheometer Options (Extensional Strain)

Extensional Strain

Example 1: Thermoplastic Elastomers (TPEs)

TPE: SIS triblock copolymer

Stretched at room temperature

Sentmanat Extensional rheometer (SER):

Ideal geometry for in-situ scattering measurements

López-Barrón et al., Rheol. Acta 55, 103 (2016)

Extensional Strain

Example 3: Polymer melts

<u>Sample:</u> Polystyrene (H/D Isotope blends Stretched in the melt (at 150 °C) using time-resolved SANS

Realistic and Industrially Relevant Flow Conditions

It is often very difficult to measure the nanostructure of complex fluids in dynamic and industrially relevant environments!

High Strain/Flow Rates $(\sim 1,000,000 \text{ s}^{-1})$

Non-Ambient Conditions

High Temperatures (>200°C)

High Pressures

and

(up to 70 MPa)

Toward real processing flows

Real processing flows involve a range of deformation types and histories.

3D printing B.Y. Ahn et al., Science, 2009, 323(5921).

Hydraulic fracturing Indiana Geological Survey

FRACTURED RESERVOIR horizonal wellbore NATURAL GAS

A fluidic four-roll mill (FFoRM) for arbitrary deformations

engineering

14

(white circles are 1 mm)

Model test fluid – colloidal rod suspensions

Exact microscopic theory for dilute colloidal rod suspensions¹

Dilute rods in 2D flow:

$$\theta_0(\Lambda) = \operatorname{acos}\left(\sqrt{\frac{1}{2} + \frac{\sqrt{\Lambda}}{1+\Lambda}}\right)$$

[1] Bird, Armstrong, Hassager and Curtiss, Dynamics of Polymeric Liquids, Wiley, 1977.

chemical engineering Helgeson group, UCSB, in preparation.

It is often very difficult to measure the nanostructure of complex fluids in dynamic and industrially relevant environments!

High Strain/Flow Rates $(\sim 1,000,000 \text{ s}^{-1})$

Non-Ambient Conditions

High Temperatures (>200°C)

High Pressures

and

(up to 70 MPa)

µRheoSANS -- Requirements

L. Porcar (NIST), J. Moyer (NIST), P. D. Butler (NIST), L. D. Pozzo (NIST, UW) G. Langenbucher (Anton Paar)

RheoSANS CapabilitiesTemperature-50°C to 200°CPressureAtmosphericHigh Shear Rate + Low Shear StressShear StressShear Rate12,000 s⁻¹Shear Stress900 PaLow Shear Rate + High Shear StressShear StressShear Rate3,500 s⁻¹Shear Stress4,500 Pa

Desired Capabilities

Temperature>200°CPressureup to 70 MPaShear Rateup to 10⁶ s⁻¹

Pressure Driven Flow/Capillary Rheometry

µRheoSANS -- Prototype

Weston, Seeman, Salipante, Blair, Hudson and Weigandt (In Preparation)

µRheoSANS of Anionic Wormlike Micelles

Couette vs Poiseuille RheoSANS

How can we deconvolute the scattering patterns resulting from Poiseuille Flow RheoSANS?

High shear SANS in rectangular channels

- How to isolate a certain stress, when a whole spectrum is present?
 - Depth sectioning method demonstrated by Fernandez-Ballester et al., JoR '09 (WAXS).
 - Linear stress profile from channel wall to center (continuum)
 - Scattering produced from a superposition of these stress states.
 - When the pressure is increased from one state to another, the difference comes only from the highest stress near the channel walls.

Analysis: Determining Structure near the Wall

Fernandez-Ballester et al, J. Rheology, 2009, 53, 1229

Analysis: Determining Structure near the Wall

Analysis: Determining Structure near the Wall

µRheoSANS of Anionic Wormlike Micelles

High shear SANS in rectangular channels

Slit scan data from D22 at ILL in collaboration with Lionel Porcar and Joao Cabral

µRheoSANS Limitations

- Depth dependent scattering analysis:
 - Approach will fail if the scattering depends on position independent of stress
 - Concentration gradient
 - Continuous sample (no sample fracture)
 - Slice depth relative to scattering object dimensions
 - Time...
- Pressure drop or flow rate limited in terms of reaching high shear rates...

µRheoSANS -- Prototype

Weston, Seeman, Salipante, Blair, Hudson and Weigandt (In Preparation)

µRheoSANS Upgrade (high P/SR)

	Eluid	Maximum Shear Rate, s ⁻¹			Maximum ΔP, psi		
	Гиц	25 µm	50 µm	100 µm	25 µm	50 µm	100 µm
	Water	4.25 x 10 ⁶	1.07 x 10 ⁶	2.67 x 10 ⁵	3500	450	60
	Ethylene Glycol	3.08 x 10 ⁶	1.07 x 10 ⁶	2.67 x 10 ⁵	5000	5000	1083
	Glycerol	4.10×10^4	8.21 x 10 ⁴	1.65 x 10 ⁵	5000	5000	5000
42.5 inches	37 inches	*based on a r	Vectangular ch	s To DAQ Board To DAQ Board	wide x 70 mm	n long	

µRheoSANS Upgrade (high P/SR)

Challenges

- Analysis: Can we get more from our anisotropic 2D data? Simultaneous fits of data through multiple flow planes?
- Limitations: Communicating limitations without stifling creativity?
- Portability: How easy is it to port new sample environment from one facility to the next?

Extra Slides

Microfluidics-SANS

Microfluidic-SANS: flow processing of complex fluids

Carlos G. Lopez¹, Takaichi Watanabe¹, Anne Martel², Lionel Porcar² & João T. Cabral¹

¹Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK, ²Institute Laue-Langevin, BP 1566 rue Jules Horowitz, 380 42 Cedex 9 Grenoble, France.

Joao Cabral and Lionel Porcar et al

Millifluidic SANS -- SANSdrop

• Keep combined dispersed phase flow rate constant

Carnegie Mellon University -- Center for Complex Fluids Engineering – Lynn Walker and Blake Bleier